برآورد تبخیر از تشت تبخیر ایستگاه سد تنظیمی دز با استفاده از روش شبکه عصبی مصنوعی

Authors

  • حسین اسلامی استادیار دانشگاه آزاد اسلامی، واحد شوشتر، گروه علوم آب، شوشتر، ایران
Abstract:

بیشتر بارندگی مناطق خشک و نیمه خشک بصورت تبخیر به جو باز می گردد پس تخمین تبخیر دربرآورد میزان آب در چرخه آب مهم خواهد بود. تبخیر وابسته به پارامترهای مختلفی است و برای برآورد آن نیاز به متغیرهای اقلیمی متفاوتی است و اثر متقابل این متغیرها بسیار پیچیده است لذا در بررسی آن باید روشهای دقیقی را بکار گرفت. در این تحقیق برای برآورد تبخیر از تشت ایستگاه سد تنظیمی دز از روش شبکه عصبی مصنوعی استفاده شد. بطوریکه روش شبکه عصبی مصنوعی با تابع محرک تانژانت هایپربولیک و قانون یادگیری مومنتم استفاده شد. ساختار مورد استفاده یک شبکه چندلایه پرسپترون بوده که از 6 نورون ورودی، 3 لایه پنهان و یک نورون خروجی تشکیل شده بود. لایه‌های ورودی شامل دمای حداکثر، دمای حداقل، ساعات آفتابی، میانگین سرعت باد، میانگین درصد رطوبت نسبی و برای لایه خروجی میزان تبخیر از سطح آزاد آب بود. بررسی همبستگی بین عوامل اقلیمی نشان داد که میانگین دمای هوا اثر بیشتری بر میزان تبخیر سطحی نسبت به ساعات آفتابی و سرعت باد دارد. ضریب تعیین بالا (0/92) بین داده‌های واقعی با داده‌های شبیه‌سازی شده با شبکه عصبی مصنوعی به‌علاوه میزان خطای اندک (RMSE = 1.41) نشان داد که مدل از دقت بسیار بالایی در برآورد برخوردار است. صحت سنجی توسط تی تست نیز حاکی از عدم معنی‌دار بودن (P>0.01) اختلاف میان مقادیر واقعی و برآورد شده بود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه روش های تجربی برآورد تبخیر از سطح آزاد آب (مطالعه موردی: سد تنظیمی دز)

تبخیر عامل مهمی در مدیریت منابع آب است و با محاسبه دقیق آن می توان راهکارهای موثری در جهت کاهش اثرات خشکسالی و به منظور حفاظت منابع آب اجرا نمود. به دلیل کمبود ایستگاههای تبخیر سنجی و عدم وجود آمار کافی از تبخیر از روشهای تجربی برآورد تبخیر از سطح آزاد آب می توان استفاده نمود. در این تحقیق با استفاده از آمار 10 ساله ایستگاه سد تنظیمی دز با استفاده از روشهای تجربی مایر، مارسیانو، شاهتین، هفنر، ا...

full text

پیش بینی تبخیر با استفاده از شبکه عصبی مصنوعی و سیگنا لهای اقلیمی در حوضه دز

تبخیر از پدیده های مهم چرخه آبشناختی است و تخمین و پیش بینی آن در مدیریت و برنامه ریزی اصولی آب ضروری می باشد، به همین خاطر به پیش بینی این پدیده در حوضه دز که بخش مهمی از آب مصرفی کشور را تأ مین می کند پرداخته شده است. در شبیه سازی تبخیر و بررسی امکان پیش بینی آن ازمدل شبکه عصبی مصنوعی با بهره گیری از نرم افزار نروسلوشن استفاده گردیده که آمار مربوط به تبخیر در 4 ایستگاه همدید با حداقل 19 سال آ...

full text

مدل شبکه عصبی مصنوعی تبخیر ماهانه از تشت با استفاده از داده های هواشناسی- مطالعه موردی منطقه حاشیه دریای خزر

تبخیر یکی از مؤلفه‌های اصلی چرخه آب در طبیعت بوده و تعیین دقیق آن برای بسیاری مطالعات مثل بیلان آبی حوزه، طرح ریزی و مدیریت منابع آب حائز اهمیت است. تبخیر به دلیل اثرات متقابل عوامل متعدد اقلیمی، پدیده پیچیده و غیر خطی است و لذا برای تخمین آن باید از مدل‌های پیشرفته استفاده کرد. در این تحقیق، هشت نوع ترکیب پارامترهای هواشناسی بعنوان داده‌های ورودی برای برآورد تبخیر از تشت  با استفاده از شبکه‌ها...

full text

مقایسه ضرایب تشت برآورد شده با استفاده از روش‌های تجربی، شبکه عصبی مصنوعی و عصبی- فازی در برآورد تبخیر و تعرق گیاه مرجع

در این تحقیق کارایی روش‌های متفاوت تجربی (کوینکا، اشنایدر، اورنگ، آلن و پرویت، مدل راگووانشی و والندر، اشنایدر اصلاح شده، پریرا) در مقایسه با شبکه عصبی مصنوعی (ANN) و سامانه استنتاج عصبی- فازی تطبیقی (ANFIS)در برآورد ضریب تشت رده A و تبخیر و تعرق گیاه مرجع، در یک اقلیم گرم و خشک مورد ارزیابی قرار گرفت. بدین‌منظور از آمار 10 ساله مربوط به اندازه‌گیری روزانه تبخیر از تشت استفاده شد. با توجه به ک...

full text

مقایسه ضرایب تشت برآورد شده با استفاده از روش های تجربی، شبکه عصبی مصنوعی و عصبی- فازی در برآورد تبخیر و تعرق گیاه مرجع

در این تحقیق کارایی روش های متفاوت تجربی (کوینکا، اشنایدر، اورنگ، آلن و پرویت، مدل راگووانشی و والندر، اشنایدر اصلاح شده، پریرا) در مقایسه با شبکه عصبی مصنوعی (ann) و سامانه استنتاج عصبی- فازی تطبیقی (anfis)در برآورد ضریب تشت رده a و تبخیر و تعرق گیاه مرجع، در یک اقلیم گرم و خشک مورد ارزیابی قرار گرفت. بدین منظور از آمار 10 ساله مربوط به اندازه گیری روزانه تبخیر از تشت استفاده شد. با توجه به کم...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  78- 88

publication date 2016-03-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023